If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+80H+3264
We move all terms to the left:
-(-16H^2+80H+3264)=0
We get rid of parentheses
16H^2-80H-3264=0
a = 16; b = -80; c = -3264;
Δ = b2-4ac
Δ = -802-4·16·(-3264)
Δ = 215296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{215296}=464$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-464}{2*16}=\frac{-384}{32} =-12 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+464}{2*16}=\frac{544}{32} =17 $
| H=-16t^2+80t+3264 | | H=-16t^2+80t+3264 | | 5(-1.1y-1.8)-2y=17 | | 5(-1.1y-1.8)-2y=17 | | 5(-1.1y-1.8)-2y=17 | | 5(-1.1y-1.8)-2y=17 | | 2x-30=-22 | | x6=7. | | x6=7. | | (8+z)(5z+2)=0 | | (8+z)(5z+2)=0 | | 2x+7+3x=9x-1 | | 2x+7+3x=9x-1 | | 20x+45=30+20 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 6y-8=18 | | 5x-15°=3x+19° | | 5x-15°=3x+19° | | 5x-15°=3x+19° | | -1=6-12w | | 5x-15°=3x+19° | | 5x-15°=3x+19° | | -1=6-12w | | 3a+7/4=4 | | 109x4=1350 |